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Abstract
This paper proposed a reverse k nearest p%-_ 12

neighbor (RKNN) query algorithm in road network 3l \‘ 4 g opF
distance by using the smple materialization path view p?é( *—",/’
(SMPV) data structure.When a set of interest objects P S\ 720

: : . 287
and a query point q are given, RKNN query retrieves ds
reverse nearest neighbors of q from the set P. Two P
types of RNN, monochromatic (MRNN) and Figure 1. The example of NN vs RNN
bichromatic (BRNN)are classified in the literature. In
conventional approaches for RNN query on a road Table1. NN vs RNN
network distance, it takes very long processing time INN | 2NN RINN R2NN

becausekNN search algorithm is invoked on every
visited node. Using SMPV in combination with pl | p2 p2.p3 | ¢ {p2, p3}
incremental Euclidean restriction (IER) framework
reduces processing time in kNN search significantly.

p2 | p3 p3,p1 | {p3,p1l,p4} | {p3,p1,p4}

This paper studied for both types of RNN comparing p3 | p2 p2,p1 | {p2} {p2,p1,p4}

with the conventional method, Eager algorithm. With

extensive experiments, the proposed method p4 | p2 P2.p3 | o ¢

outperformed Eager algorithm in term of processing

time especially when the k valueislarge. In general, RNN query can be definedasthe
_ following:

1. Introduction RKNN = {p OPH(pQ)<d(ppdp)} (1)

An increase of mobile applications highly Where(p) is thek" NN of p. When a set of interest
depends on variety of spatial queries for locatiesed  PointsP and a query poirg are given, an RNN query
services (LBS). Subsequently, there has been & gre&etrieves the points which arenearest neighbogs to
deal of researches on revefsaearest neighbor query RNN query is classified as monochromatic and
algorithms.Most existing algorithm are based onbichromatic RNN. In monochromatic (MRNN), a
Euclidean distance, however in LBS application, given set of interest points and a query pointhis t
especially in mobileenvironment, road network basedsame data object.In contrast, for bichromatic (BRNN
queries are practically required. Query algorithon f query, two different data sets are given for theriest
RkNN based on Euclidean distance has been activelpbjects P) and the query pointsSY sets. Practically,
studied. this type of query is required in manyLBS related

When a set of interest objecs and a query applications both for emergency and non-emergency
pointq is given, a query to find the nearest neighbor ofcases, for instance, taxi allocation, facility
a pointq (O P) is called a nearest neighbor (NN) query. management.Although very limited research has been
Reversely, when the NN qf (O P) isq (O P), p is focused on RNN query on road network distance,
called a reverse nearest neighbor (RNN)gdRNN existing approaches have shortcomings in processing
query is returned as a result set. Figure 1 dessiibe times especially when the interest points are shars
example of NN and RNN for a game application in allocated on road network or when the valuekdé
which players find their NN to shoot and reverse lage.

nearest neighbors (RNN) to avoid shoots from them. In this paper, we propose a fastNN query in
this figure, circles represent players, and R1NNand©ad network distance using simple materializedh pat
R2NN of each player are listed. view (SMPV) data [2]. Our proposed algorithm for
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both MRNN and BRNN is compared with the existing Dijkstra's to find for inclusion of NN in it. They
approach, Eager algorithm proposed by Yiu et gl. [1 proposed two algorithms (called the Eager and Lazy
and evaluated the performance of the proposed miethoalgorithms) that differ in their respective pruning
The proposed algorithm searchedNRl approximately  methods. In these methods, the Eager algorithm
two orders of magnitude faster than the existingkwo searches NN significantly faster, especially when the
in terms of processing time. It especially outperf®  value ofk is small and the set of points are densely
when interest points are sparsely distributed énrtiad ~ distributed. In contrast, for larg&k or sparsely
network and the value of is large, and offers the distributed points, it requires long processing esm
stability in processing time and independency & th because the Eager algorithm gradually enlarges the
point distribution density. search area, similar to Dijkstra's algorithm, ahe t
The rest of the paper is organized as follows.kNNs are searched at every visited road network .node
Related work is described in Section 2. In SecBpn To cope with this performance problem, Yiu et é&oa
the SMPV data structure and shortest path searcproposed a path materialization method. FokiBR
algorithm are discussed. We also describe thequery, Kornet al. [3] first proposed for Euclidean
principles for an RNN query on road network distance distance, and then Yiu et al. [1] researched Eager
and proposed a fast query method in Section 4algorithm for BRKNN in road network distance. Even
Experimental results angresented in Section 5, and we though BRNN has been focused, respective approach
conclude our paper in Section 6. was for BR1INN, and most traditional methods for
BRkNNhas deficiency in processing time.

2. Related Work

3. Simple M aterialized Path View
In earlier literature, Euclidean distance based

RkNN queries have been addressed. The concept of 1. Generating Distance Table

RNN is formally introduced by Korn et al. [3]. Ihdir

approach, the distance from each interest objettof The principle behind the simple materialized
its NN is pre-computed. Given this data, a setafis path view (SMPV) is to partition a given graph Goin
and their distances to the NN are registered ilrRan several sub graphsbythe dotted lines as shown in
tree, and the circle centered at a data point with Figure 2, called partitioned graphs (PGi) in thést®on
radius equal to the distance to the NN is called it onwards.

vicinity circle. The RNN of the query objeqtis found

in the R-tree by searching the set of interestaibjtor PG1 /’ PG2

those whose vicinity circles overlap with However,
this method is not suitable for arki®N query because
k in an RKNN query is normally set when a query is
issued. In their concept, the R-tree is construotgdg
vicinity circles of predefined NN distances, and the
distance to th&™ NN cannot be practically determined
for RKNN before invoking the query.

Stanoi et al. [4] proposed RNN algorithm in
which RNN search region is divided into six regions
centered at the query point. Then, the set of paitats
P which is NNs ofg are retrieved from each region.Tao
et al. [5] proposed another efficient algorithmledl
TPL that recursively prunes the search space ubimg
bisector between a query poigtand its NN.These
methods do not require any pre-computation.

Figure 2.Theflat graph and its partitions

Therefore, they are applicable to generd@NRqueries, The detail concept of SMPV is introduced in [2].

however, these efficient methods cannot be directlyln this section, some modification of SMPV inwhich

applied to RNN queries in road network distances. ~ appended inner-to-border-nodes distance table is
Yiu et al. [1] proposed the first KRIN  briefly presented.

algorithms applicable to road networks. The intuiti Figure 2 is partitioned into four partitioned

behind is that the area is gradually enlarging bygraphs. In this figure, white circles are calledden
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nodes which belong to at least two PGs. Black &scl 3.2, Partitioning a large graph

are called inner nodes which are other nodes except

border nodes. Two PGs are defined as adjacent PGs i The real road network can be divided

they have at least one common border node. Howeveihtopartitioned graphs by (1) selecting source soate

each edge belongs to only one PG exactly. the given road network, and (2) applying Dijkstra’s

multi-source shortest path algorithm, each road

n2 nl network is checked whether it is nearest from each

source node, and then nearest nodes are grouped

intosame partitioned graph.Then, BBDT and IBDT

tables are prepared for each partitioned graph.

bl

4. RKNNQuery

In this section, a basic method fd&ffRN query
in road networks by applying an improved method
based on the incremental Euclidean restriction JIER
framework is presented.

In the RNNquery algorithm, a process to find Lemma 1 Letgbe a query pointh be a road network
the road network distance between two points (starhode and p be a data point that satisfies
and destination) is necessary. In this processptie  d,(q,n)>dy(p,n). For any data pointp(#p) whose
computed distance tables with SMPV data, border-togportest path tq passes through,dy(g, p)>du(p.p).
border node Table 2(BBDT) and inner- to-border nodernis means that is not an RNN 0.

Table 3.

Figure 3.Extracted graph PG2

Yiu et al. [1] presented the lemma mentioned above
Table 2. Border-to-border nodetable and it is proved wheréy(a,b) denotes the road network
distance betweea andb.

bl b2 b3 b4 b5
ni|21 |15 |21 |19 |23 3 [pgl—2
6 7
n2 | 17 11 17 15 19 3
ZEX F
2
n3 | 10 4 10 8 12 3
nd {19 |13 |19 |17 |3 4 .
Figure4.
bl b2 b3 b4 b5 RNN
Table 3. Inner-to-border-node table bi | o 6 20 18 22 query on
aroad
(IBDT) are applied.Table 2 shows the shortesEJ2 6 0 14 12 16 networ k
path length between every pair of border nodeq of
PG;shown in Figure 3.These lengthsare calculateg3 | 20 14 0 2 22 Figu
by traveling inside the partitioned graph.If a pgth re 4 shows
between a pair of nodes inside the partitioned flyrpg?4 | 18 12 2 0 20 [ an RNN
[ infini i [ . ery on
is not connected, the infinity value |§ assigned b5 | 22 16 29 20 0 qu y
The real road network is not always simple

symmetrical because there might exist one-way roadsoad network. In this figure, rectangles represead

or delays affecting only one direction of a two-way network nodes and triangles indicate data pointgaD

road.Thus, the transport matrix as shown in Tabie 3 points are assumed to be located on nodes, but this

also prepared to retrieve the distance from anrinnerestriction can be relaxed easily. The numbergyassi

node as a starting point to a border node. on edges are distances. To consider RNN on this
figure, it is necessary to find nodes that are emar
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neighbor (NN) to a query poitwtat point A. When we
observeD, the NN data point oD is E and the NN
data point ofE is H. Therefore A is not the NN data
point of E. If we substituten with D, p with E, pwith H

in Lemma 1, we obtain the relatiodg(A,D)>d\(E,D)
and dy(A,H)>dy(E,H). Therefore, even if we continue
searching beyorigl, we cannot find the RNN af.

2
sl 0
0] Pl | !
[ .p2
| s3

Figure 5.The example of BRNN query

Alternatively, Figure 5 shows the idea of BRNN
query in Euclidean distance. When a set of query

objectsSand a set of data objed®sand a query poirg

(O S) are given, BRNN query retrieves all data points

in p(O P) that are nearest tpthan any other points in
S In this figure, p is BRNN of g, p; is BRNN of $
and p and p is BRNN of s.

Hereafter, how MRNN query works with Eager

algorithm, proposed by Yiu et al. [1] which is foled

simplicity, these functions are here after denoasd
verifyRNN and rangeNN.

The disadvantages intheEager algorithm are
summarized as two: (1)a large search area for the
verifyRNNandrangeNN functions, (2)a drastic inceeas
in processing time caused by performing rangeNN on
every visited node on the road network distance.

To cope with these problems, we propose a
method to adapt an IER framework for the verifyRNN
and rangeNN methods. Furthermore, we present an
efficient method of RNN search to perform
MRKNNand BRNN queries on the SMPV: (1) to
adapt an IER framework for both rangeNN and
verifyRNNand (2) to use the Eager algorithm only on
the border nodes in the SMPV.

4.1. RkNN on SMPV structure

The reason of poor performance in the Eager
algorithm is invoking rangeNNat every visited node,
and it takes long processing times.In Algorithmmdl
in the proposed method, rangeNN is invoked only on
the border nodes of the partitioned graphs to @raec
the deficiency in the Eager algorithm.

Algorithm 1, the procedure StartPG is invoked
to determine the partitioned graph to which a given

query point g belongs as expressed in line 2 of

the lemma 1, is described by Figure 4. Road r'ewvo”fiklgorithm 1. Let the data point set BeThen in line 4,

nodes are visited frongto surrounding nodes in a

method similar to that of Dijkstra’s algorithm.When

the queryqis on A in this figure, nodeB is visited
first.Next, at mosk NNs of B is searched for within

the distance Dsty(B,A). This function is called

rangeNNg,q,Dst). In the above exampla,is B andq

is A. For simplicity, we only consider for ore In the
previous queryC is found asB's NN. Then, we check
whetherC is included as an RNN d&. This check can
be done to investigate whethiis the NN ofC.

This function is called verify(k,q) and returns

true whenq is the NN ofp, otherwise, it returns false.
In this example, the result of verify(l,q) is true;
therefore,C is determined as an RNN gf The next
visited node iD; thus, rangeNND,q,5) is called ande
is obtained as the NN dd. To check whetheE is a

RNN of q, verify(E,1,q) is called; however, false is
obtained in this case. Hence, edges beydade safely

pruned. At this time, there is no search path left

therefore, the search process is terminated.

In Yiu's Eager algorithm, two methods, named

as verifyp,k,g) and rangeNN{q,Dst) are used. For
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‘exclusive to only a partitioned graph, hence,

each element iR is checked to determine whetlepis

an RKNN of g or not. This procedure is the same as in
verify(p,k,q) in the Eager algorithm. The verifyRNN
searches for th&NNs of eachplP, and then ifq is
included in thekNN set, p is determined to be an
RKkNN of g and added to the result setin line 5.

Algorithm 1 StartPG

1: procedure StartPG§,PQ,R)
2: pg — determinePG(q)

3: P~ findPOIinPG(q)

4:for all p OPdo

5:if verifyfRNN(p,k,q) then Rp
Maddptoto result set

7:end for

8: for all bIBN do

9: PQ.enQueue(qg,b),b,a.pg>)
10:end for

11:end procedure

edd if

This check needs a wide range search and is not

BER
can be efficiently perform it using SMPV.
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Figure 6.Processing of a cell where q exists

Figure 6 shows the RGas in Figure 2. In this
example, a query poingj is on node § A square
overlapped on node ;indicates a data point. For
simplicity, the following explanation considers ttese
for which k is one. By searching for the NN of, m is
obtained as the result. Thereforeisnan RNN ofq.
Consequently, 4is added to the result set. Next, the

this partitioned graph, a nodhgis included. ThekNNs

of nzare searched, anddfis included in thekNN set,
nsis added to the result set. Otherwisgis ignored.
This partitioned graph can be visited several times
from different border nodes. TherefoRG, is marked
as visited to avoid duplicate searches. In the stef,
rangeNN is invoked from the border nobdeto find
candidate data points. If the result set is not tgmp
verifyRNN is invoked to check whether each found
data point is truly an BN of g. If the result of
verifyRNNis true, the data point is added to thsute
set. If the size of the result set returned fromyeNN

is smaller thark, there can exist otherkRINs on the
path through this noden, and still cannot prune the
search. Therefore, new records frdinto the other
border nodes in the partitioned graph are createtl a

search area is enlarged to include the neighboringnserted into PQ.

partitioned graph. For each border nokieof this
partitioned graph, the distance frayrto biis obtained
by referring to the IBDT of the related partitioned

Algorithm 2 shows the pseudo-code of the
proposed method described above. Lines 3 to 12 are
similar to the process described by the Eager ilgor

graph. Thereafter, a record is composed and irserteWhen the recordv is obtained from PQ, at most

into priority queue PQ. The record is composed as

<d,n,p,cid>

wherd is the road network distance betwepand the

border node concerned)( p is the previous node on
the shortest path frong to n, and ciddenotes the
partitioned graph ID to whicm belongs. The first
record inserted into PQ is as follows.

<dn(q,bi),bi,q, PG>

Here, PG;denotes the partitioned graph in whighs
included. Line 8 to 10 indicates insertion process
PQ.

Next, the RNN search starts. When a record is

dequeued from PQ, the search propagates to the

neighboring partitioned graphs. Figure 7 illustsate
partitioned graphPG; in which query pointq is
included and Péas its neighboring partitioned graph.

Figure 7.Border node expansion

When a record is dequeued from PQ amcis
the border nodé,, data points iPG, are searched. In
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number ofk NNs of the road network nodenare
searched and put intKNN. For each elemernp of
KNN, p is checked whethear is included in itskNN. If
it is includedpis added into the result set R.

Line 13 of Algorithm 2 checks whether
thenumber of elements KNN is less thark; i.e., the
numberofrangeNN resulted data points that areiegist
in the area centered ah, and having smaller distance
thandy(v.n, q) is less thark. If so, nodev.nis expanded
and the search is continued. Otherwise, no more
RkNNs exists on the path througin; therefore, node
expansion at.nis not executed.

Algorithm 2 RKNN

1: functionRKNN(q)

2: PQ — @1 R~ @

3: StartPGg; PQ,R)

4: while PQ not emptylo

5:v « PQ.deQueug()

6: CSadd(v)

7: KNN ~rangeNN(vn,k,dN(v.n,q),PQ)
8:for all pin KNN do

9:if verifyfRNN(p,k,q) then
10:R-R/p

1l:end if

12:end for

13:if |[KNN|<k then

14:for all b BN do

15:f v.cid is visited first timehen
16: CP f indPOIinSG(v.cid)

17:for all p CP do

18:if verifyRNN(p,k,q) then
19:R-R.p

20:end if

21:end for




22end if

23: PQ.enQueue@i(qg,b),b,p,v.cid>)
24:end for

25:end if

26:end while

27:return RERKNN of q

28: end function

5. Experimental Evaluations

To evaluate our proposed methotbr RKNN

processing time in secondswhen5. The processing
time of the Eager algorithm increases sharply wthen
density is low. On the other hand, the proposed
algorithm remains fast even in that case. When the
density of data points is high, the Eager algorithm
performed well because the size of the search area
decreases with the increase in the density. The
proposed algorithm shows stable characteristics and
independent of the probability.
Figure 10 shows the

processing time

comparing to the existing Eager algorithm, SeveralforBRkNNquery.This figure measures the processing

experiments have been done by using the real roaﬁme for BRINN by varyingthd for S(query points)
network data of Saitama city map whose nodes a'Set whenD of P(interest points ) set is 0.002.In this

16,284 and links are 24,914. We generated Variet¥esult, the horizontal axis shows the varl@df S set

ofdensity(D) of data point sets on the road network

links by pseudorandom sequencebor instancep =

0.01 means that a data point exists once every 1ORecessary
links. Both algorithms were implemented in Java andlong proc,essing time. Conversely
Corei7-4770 CPU. ’

evaluated on a PC with Intel
(3.4GHz) and 32GB of memory.

Figure 8 and 9 show the processing times of
MRKNN queries. In the figure 8, the densityof data

points isset to 0.01. In this figure, the horizbraais
showskvalue for MRKNNand the vertical axis shows
the processing times in seconds to sedfdhs. As
shown in the figure, the processing time of the éag
algorithm sharply increases withbecause the search
area also expands. In contrast, the proposed tigori
linearly increases witk.

10

T T
Eager —>—
Proposed ---G--

Processing time (s)
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Figure 8.Processing time when D is 0.01
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Figure 9. Processing time when Dvaries

Figure 9 shows the processing time on varying
the density of data points. In the figure, the bontal
axis shows the density and the vertical axis shites
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and the vertical axis is the processing time.
WherDofSsetis low, searching in wide range is
and in such case, the Eager algoritkes ta
whdh value
increases, the searching area becomes narrow and
processing time is faster in Eager algorithm. Hosvev

our proposed method showed the stable characteristi

and independent of the D f8iset.

T T
Eager —&—
Proposed —&—

ol

Processing Time (s)

001

0.001 0.002 0.005 0.01 0.02 0.05

S set Density

Figure 10. Processing timevarying D for S
6. Conclusion

In this paper, we proposed a fast\NR query in
road network distance by using the simple mategdli
path view (SMPV) data. We presented two types of
RkNNquery, MRKNN and BRNN query. With
extensive experiments, we showed that the
performance of the proposed method comparing with
the existing method, Eager algorithm. Especialhg t
proposed method is 10 to 100 times faster in psicgs
time for both types of NN query when the number of
kis large and when the density distribution of p®iist
sparse on a road network. On the other hand, tgerEa
algorithm has a merit for the very dense distrifbutf
points on road network. Hence, it is considered to
refine a new approach by the combination of the
strength of our proposed method and the Eager
algorithm in order to obtain a more efficient and
adaptive query which is not depending on the dgnsit



distribution of data points on a road network. To[2] Hlaing, A. T., Htoo, H., Ohsawa, Y., Sonehara, Nd a

advance this concept is for our future work.
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