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Abstract 

This paper proposed a reverse k nearest 
neighbor (RkNN) query algorithm in road network 
distance by using the simple materialization path view 
(SMPV) data structure.When a set of interest objects P 
and a query point q are given, RkNN query retrieves 
reverse nearest neighbors of q from the set P. Two 
types of RNN, monochromatic (MRNN) and 
bichromatic (BRNN)are classified in the literature. In 
conventional approaches for RNN query on a road 
network distance, it takes very long processing time 
becausekNN search algorithm is invoked on every 
visited node. Using SMPV in combination with 
incremental Euclidean restriction (IER) framework 
reduces processing time in kNN search significantly. 
This paper studied for both types of RNN comparing 
with the conventional method, Eager algorithm. With 
extensive experiments, the proposed method 
outperformed Eager algorithm in term of processing 
time especially when the k value is large. 

1. Introduction 

An increase of mobile applications highly 
depends on variety of spatial queries for location based 
services (LBS). Subsequently, there has been a great 
deal of researches on reverse k nearest neighbor query 
algorithms.Most existing algorithm are based on 
Euclidean distance, however in LBS application, 
especially in mobileenvironment, road network based 
queries are practically required. Query algorithm for 
RkNN based on Euclidean distance has been actively 
studied. 

When a set of interest objects P and a query 
point q is given, a query to find the nearest neighbor of 

a point q (∈ P) is called a nearest neighbor (NN) query. 

Reversely, when the NN of p (∈ P) is q (∈ P), p is 
called a reverse nearest neighbor (RNN) of q.RNN 
query is returned as a result set. Figure 1 describes the 
example of NN and RNN for a game application in 
which players find their NN to shoot and reverse 
nearest neighbors (RNN) to avoid shoots from them. In 
this figure, circles represent players, and R1NNand 
R2NN of each player are listed. 

 
 
 
 
 
 
 

 
Figure 1. The example of NN vs RNN 

 
Table 1. NN vs RNN 

 
In general, RkNN query can be definedasthe 

following: 
RkNN = {p ∈P|d(p,q)≤d(p,pk(p))}  (1) 

wherepk(p) is the kth NN of p. When a set of interest 
points P and a query point q are given, an RkNN query 
retrieves the points which arenearest neighbors to q. 

RNN query is classified as monochromatic and 
bichromatic RNN. In monochromatic (MRNN), a 
given set of interest points and a query point is the 
same data object.In contrast, for bichromatic (BRNN) 
query, two different data sets are given for the interest 
objects (P) and the query points (S) sets. Practically, 
this type of query is required in manyLBS related 
applications both for emergency and non-emergency 
cases, for instance, taxi allocation, facility 
management.Although very limited research has been 
focused on RkNN query on road network distance, 
existing approaches have shortcomings in processing 
times especially when the interest points are sparsely 
allocated on road network or when the value of k is 
large. 

In this paper, we propose a fast RkNN query in 
road network distance using simple materialized path 
view (SMPV) data [2]. Our proposed algorithm for 
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both MRNN and BRNN is compared with the existing 
approach, Eager algorithm proposed by Yiu et al. [1], 
and evaluated the performance of the proposed method. 
The proposed algorithm searches RkNN approximately 
two orders of magnitude faster than the existing work 
in terms of processing time. It especially outperforms 
when interest points are sparsely distributed in the road 
network and the value of k is large, and offers the 
stability in processing time and independency of the 
point distribution density. 

The rest of the paper is organized as follows. 
Related work is described in Section 2. In Section 3, 
the SMPV data structure and shortest path search 
algorithm are discussed. We also describe the 
principles for an RkNN query on road network distance 
and proposed a fast query method in Section 4. 
Experimental results are presented in Section 5, and we 
conclude our paper in Section 6. 

2. Related Work 

In earlier literature, Euclidean distance based 
RkNN queries have been addressed. The concept of 
RNN is formally introduced by Korn et al. [3]. In their 
approach, the distance from each interest object of P to 
its NN is pre-computed. Given this data, a set of points 
and their distances to the NN are registered in an R-
tree, and the circle centered at a data point with a 
radius equal to the distance to the NN is called its 
vicinity circle. The RNN of the query object q is found 
in the R-tree by searching the set of interest objects for 
those whose vicinity circles overlap with q. However, 
this method is not suitable for an RkNN query because 
k in an RkNN query is normally set when a query is 
issued. In their concept, the R-tree is constructed using 
vicinity circles of predefined kth NN distances, and the 
distance to the kth NN cannot be practically determined 
for RkNN before invoking the query.  

Stanoi et al. [4] proposed RNN algorithm in 
which RNN search region is divided into six regions 
centered at the query point. Then, the set of data points 
P which is NNs of q are retrieved from each region.Tao 
et al. [5] proposed another efficient algorithm called 
TPL that recursively prunes the search space using the 
bisector between a query point q and its NN.These 
methods do not require any pre-computation. 
Therefore, they are applicable to general RkNNqueries, 
however, these efficient methods cannot be directly 
applied to RkNN queries in road network distances. 

Yiu et al. [1] proposed the first RkNN 
algorithms applicable to road networks. The intuition 
behind is that the area is gradually enlarging by 

Dijkstra's to find for inclusion of RkNN in it. They 
proposed two algorithms (called the Eager and Lazy 
algorithms) that differ in their respective pruning 
methods. In these methods, the Eager algorithm 
searches RkNN significantly faster, especially when the 
value of k is small and the set of points are densely 
distributed. In contrast, for large k or sparsely 
distributed points, it requires long processing times 
because the Eager algorithm gradually enlarges the 
search area, similar to Dijkstra's algorithm, and the 
kNNs are searched at every visited road network node. 
To cope with this performance problem, Yiu et al. also 
proposed a path materialization method. For BRkNN 
query, Kornet al. [3] first proposed for Euclidean 
distance, and then Yiu et al. [1] researched Eager 
algorithm for BRkNN in road network distance. Even 
though BRkNN has been focused, respective approach 
was for BR1NN, and most traditional methods for 
BRkNNhas deficiency in processing time. 

3. Simple Materialized Path View  

3.1. Generating Distance Table 

The principle behind the simple materialized 
path view (SMPV) is to partition a given graph G into 
several sub graphsbythe dotted lines as shown in 
Figure 2, called partitioned graphs (PGi) in this section 
onwards. 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2.The flat graph and its partitions 

The detail concept of SMPV is introduced in [2]. 
In this section, some modification of SMPV inwhich 
appended inner-to-border-nodes distance table is 
briefly presented. 

Figure 2 is partitioned into four partitioned 
graphs. In this figure, white circles are called border 

PG1 PG2 

PG3 PG4 



31 

 

nodes which belong to at least two PGs. Black circles 
are called inner nodes which are other nodes except 
border nodes. Two PGs are defined as adjacent PGs if 
they have at least one common border node. However, 
each edge belongs to only one PG exactly. 
 
 
 
 
 
 
 
 
 
 

Figure 3.Extracted graph PG2 

In the RkNNquery algorithm, a process to find 
the road network distance between two points (start 
and destination) is necessary. In this process, the pre-
computed distance tables with SMPV data, border-to-
border node Table 2(BBDT) and inner- to-border node 
Table 3. 

Table 2. Border-to-border node table 

 
Table 3. Inner-to-border-node table 

 
(IBDT) are applied.Table 2 shows the shortest 

path length between every pair of border nodes of 
PG2shown in Figure 3.These lengthsare calculated 
by traveling inside the partitioned graph.If a path 
between a pair of nodes inside the partitioned graph 
is not connected, the infinity value is assigned.  

 The real road network is not always 
symmetrical because there might exist one-way roads 
or delays affecting only one direction of a two-way 
road.Thus, the transport matrix as shown in Table 3 is 
also prepared to retrieve the distance from an inner 
node as a starting point to a border node. 

3.2. Partitioning a large graph 

The real road network can be divided 
intopartitioned graphs by (1) selecting source nodes on 
the given road network, and (2) applying Dijkstra’s 
multi-source shortest path algorithm, each road 
network is checked whether it is nearest from each 
source node, and then nearest nodes are grouped 
intosame partitioned graph.Then, BBDT and IBDT 
tables are prepared for each partitioned graph. 

4. RkNNQuery 

In this section, a basic method forRkNN query 
in road networks by applying an improved method 
based on the incremental Euclidean restriction (IER) 
framework is presented. 
Lemma 1 Letqbe a query point, n be a road network 
node and p be a data point that satisfies 

dN(q,n)>dN(p,n). For any data point p′(≠p) whose 

shortest path to q passes through n,dN(q, p′)>dN(p,p′). 
This means that p is not an RNN of q. 
Yiu et al. [1] presented the lemma mentioned above 
and it is proved where dN(a,b) denotes the road network 
distance between a and b. 

 
 
 
 
 
 
 
 

 Figure 4. 
RNN 

query on 
a road 

network 
 
Figu

re 4 shows 
an RNN 
query on 

simple 
road network. In this figure, rectangles represent road 
network nodes and triangles indicate data points. Data 
points are assumed to be located on nodes, but this 
restriction can be relaxed easily. The numbers assigned 
on edges are distances. To consider RNN on this 
figure, it is necessary to find nodes that are nearest 

 b1 b2 b3 b4 b5 

n1 21 15 21 19 23 

n2 17 11 17 15 19 

n3 10 4 10 8 12 

n4 19 13 19 17 3 

 b1 b2 b3 b4 b5 

b1 0 6 20 18 22 

b2 6 0 14 12 16 

b3 20 14 0 2 22 

b4 18 12 2 0 20 

b5 22 16 22 20 0 

3333 2222 

5555 
3333 

6666 7777 

5555 

4444 

3333 

AAAA BBBB CCCC 

FFFF 

HHHH GGGG 

DDDD EEEE 

(q)(q)(q)(q) 

2222 

b1 

b2 

b3 
b4 b5 

n2 n1 

n3 n4 
6 

2 

4 

4 

9 
3 8 

7 



32 

 

neighbor (NN) to a query point q at point A. When we 
observe D, the NN data point of D is E and the NN 
data point of E is H. Therefore, A is not the NN data 

point of E. If we substitute n with D, p with E, p′with H 
in Lemma 1, we obtain the relations dN(A,D)>dN(E,D) 
and dN(A,H)>dN(E,H). Therefore, even if we continue 
searching beyondD, we cannot find the RNN of q. 
 
 
 
 

 
 
 
 

Figure 5.The example of BRNN query 
 

Alternatively, Figure 5 shows the idea of BRNN 
query in Euclidean distance. When a set of query 
objects S and a set of data objects P and a query point q 

(∈ S) are given, BRNN query retrieves all data points 

in p(∈ P) that are nearest to q than any other points in 
S. In this figure, p1 is BRNN of s1, p4 is BRNN of s2 
and p2 and p3 is BRNN of s3. 

Hereafter, how MRNN query works with Eager 
algorithm, proposed by Yiu et al. [1] which is followed 
the lemma 1, is described by Figure 4. Road network 
nodes are visited from qto surrounding nodes in a 
method similar to that of Dijkstra’s algorithm.When 
the query qis on A in this figure, node B is visited 
first.Next, at most k NNs of B is searched for within 

the distance Dst=dN(B,A). This function is called 

rangeNN(n,q,Dst). In the above example, n is B and q 

is A. For simplicity, we only consider for one k. In the 
previous query, C is found as B’s NN. Then, we check 
whether C is included as an RNN of A. This check can 
be done to investigate whether A is the NN of C.  

This function is called verify(p,k,q) and returns 

true when q is the NN of p, otherwise, it returns false. 
In this example, the result of verify(C,1,q) is true; 
therefore, C is determined as an RNN of q. The next 
visited node is D; thus, rangeNN(D,q,5) is called and E 
is obtained as the NN of D. To check whether E is a 

RNN of q, verify(E,1,q) is called; however, false is 

obtained in this case. Hence, edges beyond D are safely 
pruned. At this time, there is no search path left, 
therefore, the search process is terminated. 

In Yiu’s Eager algorithm, two methods, named 
as verify(p,k,q) and rangeNN(n,q,Dst) are used. For 

simplicity, these functions are here after denoted as 
verifyRNN and rangeNN. 

The disadvantages intheEager algorithm are 
summarized as two: (1)a large search area for the 
verifyRNNandrangeNN functions, (2)a drastic increase 
in processing time caused by performing rangeNN on 
every visited node on the road network distance. 

To cope with these problems, we propose a 
method to adapt an IER framework for the verifyRNN 
and rangeNN methods. Furthermore, we present an 
efficient method of RkNN search to perform 
MRkNNand BRkNN queries on the SMPV: (1) to 
adapt an IER framework for both rangeNN and 
verifyRNNand (2) to use the Eager algorithm only on 
the border nodes in the SMPV. 

4.1. RkNN on SMPV structure 

The reason of poor performance in the Eager 
algorithm is invoking rangeNNat every visited node, 
and it takes long processing times.In Algorithm 1 and 2 
in the proposed method, rangeNN is invoked only on 
the border nodes of the partitioned graphs to overcome 
the deficiency in the Eager algorithm. 

Algorithm 1, the procedure StartPG is invoked 
to determine the partitioned graph to which a given 
query point q belongs as expressed in line 2 of 
Algorithm 1. Let the data point set be P. Then in line 4, 
each element in P is checked to determine whether q is 
an RkNN of q or not. This procedure is the same as in 
verify(p,k,q) in the Eager algorithm. The verifyRNN 

searches for the kNNs of each p∈P, and then if q is 
included in the kNN set, p is determined to be an 
RkNN of q and added to the result setin line 5. 

Algorithm 1 StartPG 
1: procedure StartPG(q,PQ,R) 
2: pg←determinePG(q) 

3: P←f indPOIinPG(q) 

4:for all p ∈Pdo 
5: if verifyRNN(p,k,q) then R p  
�add ptoto result set                                6: end if 
7: end for 

8: for all b∈BN do 
9: PQ.enQueue(<dN(q,b),b,q,pg>) 
10:end for 
11: end procedure 

This check needs a wide range search and is not 
exclusive to only a partitioned graph, hence,  IER [5] 
can be efficiently perform it using SMPV. 
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Figure 6.Processing of a cell where q exists 
  

Figure 6 shows the PG1 as in Figure 2. In this 
example, a query point q is on node n8. A square 
overlapped on node n7indicates a data point. For 
simplicity, the following explanation considers the case  
for which k is one. By searching for the NN of n7, q is 
obtained as the result. Therefore, n7is an RNN of q. 
Consequently, n7is added to the result set. Next, the 
search area is enlarged to include the neighboring 
partitioned graph. For each border node bi of this 
partitioned graph, the distance from q to biis obtained 
by referring to the IBDT of the related partitioned 
graph. Thereafter, a record is composed and inserted 
into priority queue PQ. The record is composed as  

<d,n,p,cid> 

whered is the road network distance between q and the 
border node concerned (n), p is the previous node on 
the shortest path from q to n, and ciddenotes the 
partitioned graph ID to which n belongs. The first 
record inserted into PQ is as follows. 

<dN(q,bi),bi,q, PG1> 

Here, PG1denotes the partitioned graph in which q is 
included. Line 8 to 10 indicates insertion process into 
PQ. 

Next, the RkNN search starts. When a record is 
dequeued from PQ, the search propagates to the 
neighboring partitioned graphs. Figure 7 illustrates a 
partitioned graph PG1 in which query point q is 
included and PG2 as its neighboring partitioned graph.  
 
 
 
 
 
 
 

 
Figure 7.Border node expansion 

  
When a record r is dequeued from PQ and r.nis 

the border node b2, data points in PG2 are searched. In 

this partitioned graph, a node n3is included. The kNNs 
of n3are searched, and if q is included in the kNN set, 
n3is added to the result set. Otherwise, n3is ignored. 
This partitioned graph can be visited several times 
from different border nodes. Therefore, PG2 is marked 
as visited to avoid duplicate searches. In the next step, 
rangeNN is invoked from the border node bi to find 
candidate data points. If the result set is not empty, 
verifyRNN is invoked to check whether each found 
data point is truly an RkNN of q. If the result of 
verifyRNNis true, the data point is added to the result 
set. If the size of the result set returned from rangeNN 
is smaller than k, there can exist other RkNNs on the 
path through this node v.n, and still cannot prune the 
search. Therefore, new records from bi to the other 
border nodes in the partitioned graph are created and 
inserted into PQ.  

Algorithm 2 shows the pseudo-code of the 
proposed method described above. Lines 3 to 12 are 
similar to the process described by the Eager algorithm. 
When the record v is obtained from PQ, at most 
number of k NNs of the road network node v.nare 
searched and put into KNN. For each element p of 
KNN, p is checked whether q is included in its kNN. If 
it is included,pis added into the result set R. 

Line 13 of Algorithm 2 checks whether 
thenumber of elements in KNN is less than k; i.e., the 
numberofrangeNN resulted data points that are existing 
in the area centered at v.n, and having smaller distance 
than dN(v.n, q) is less than k. If so, node v.nis expanded 
and the search is continued. Otherwise, no more 
RkNNs exists on the path through v.n; therefore, node 
expansion at v.nis not executed. 

Algorithm 2 RkNN 
1: functionRkNN(q) 
2: PQ ←∅, R←∅ 
3: StartPG(q; PQ,R) 
4: while PQ not empty do 
5:v ←PQ.deQueue() 
6: CS.add(v) 
7: KNN ←rangeNN(v.n,k,dN(v.n,q),PQ) 
8: for all p in KNN do 
9: if verifyRNN(p,k,q) then 
10: R←R∪p 
11:end if 
12: end for 
13: if |KNN|<k then 
14: for all b ∈BN do 
15:if v.cid is visited first time then 
16: CP←f indPOIinSG(v.cid) 
17: for all p ∈CP do 
18:if verifyRNN(p,k,q) then 
19: R←R∪p 
20: end if 
21: end for 
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22:end if 
23: PQ.enQueue(<dN(q,b),b,p,v.cid>) 
24: end for 
25: end if 
26: end while 
27: return R �RkNN of q 
28: end function 

 

5. Experimental Evaluations 

To evaluate our proposed method for RkNN 
comparing to the existing Eager algorithm, several 
experiments have been done by using the real road 
network data of Saitama city map whose nodes are 
16,284 and links are 24,914. We generated variety 
ofdensity(D) of data point sets on the road network 
links by pseudorandom sequences. For instance, D = 
0.01 means that a data point exists once every 100 
links. Both algorithms were implemented in Java and 
evaluated on a PC with Intel Corei7-4770 CPU 
(3.4GHz) and 32GB of memory. 

Figure 8 and 9 show the processing times of 
MRkNN queries. In the figure 8, the densityof data 
points isset to 0.01. In this figure, the horizontal axis 
shows kvalue for MRkNNand the vertical axis shows 
the processing times in seconds to search kNNs. As 
shown in the figure, the processing time of the Eager 
algorithm sharply increases with k because the search 
area also expands. In contrast, the proposed algorithm 
linearly increases with k.  

 
Figure 8.Processing time when D is 0.01 

 

Figure 9. Processing time when Dvaries 
 

Figure 9 shows the processing time on varying 
the density of data points. In the figure, the horizontal 
axis shows the density and the vertical axis shows the 

processing time in secondswhenkis 5. The processing 
time of the Eager algorithm increases sharply when the 
density is low. On the other hand, the proposed 
algorithm remains fast even in that case. When the 
density of data points is high, the Eager algorithm 
performed well because the size of the search area 
decreases with the increase in the density. The 
proposed algorithm shows stable characteristics and 
independent of the probability. 

Figure 10 shows the processing time 
forBRkNNquery.This figure measures the processing 
time for BR1NN by varyingtheD for S(query points) 
set when D of P(interest points ) set is 0.002.In this 
result, the horizontal axis shows the varied D of S set 
and the vertical axis is the processing time. 
WhenDofSsetis low, searching in wide range is 
necessary, and in such case, the Eager algorithm takes 
long processing time. Conversely, when D value 
increases, the searching area becomes narrow and 
processing time is faster in Eager algorithm. However, 
our proposed method showed the stable characteristic 
and independent of the D for S set. 

 

 
Figure 10. Processing time varying D for S 

6. Conclusion 

In this paper, we proposed a fast RkNN query in 
road network distance by using the simple materialized 
path view (SMPV) data. We presented two types of 
RkNNquery,MRkNN and BRkNN query. With 
extensive experiments, we showed that the 
performance of the proposed method comparing with 
the existing method, Eager algorithm. Especially, the 
proposed method is 10 to 100 times faster in processing 
time for both types of RkNN query when the number of 
k is large and when the density distribution of points is 
sparse on a road network. On the other hand, the Eager 
algorithm has a merit for the very dense distribution of 
points on road network. Hence, it is considered to 
refine a new approach by the combination of the 
strength of our proposed method and the Eager 
algorithm in order to obtain a more efficient and 
adaptive query which is not depending on the density 
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distribution of data points on a road network. To 
advance this concept is for our future work. 
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