
29

Reverse kNN Query Algorithm on Road Network Distance

Tin Nilar Win, HtooHtoo, Yutaka Ohsawa
Graduate School of Science and Engineering, Saitama University, Japan

tinnilar.win@gmail.com, htoohtoo@mail.saitama-u.ac.jp, ohsawa@mail.saitama-u.ac.jp

Abstract

This paper proposed a reverse k nearest
neighbor (RkNN) query algorithm in road network
distance by using the simple materialization path view
(SMPV) data structure.When a set of interest objects P
and a query point q are given, RkNN query retrieves
reverse nearest neighbors of q from the set P. Two
types of RNN, monochromatic (MRNN) and
bichromatic (BRNN)are classified in the literature. In
conventional approaches for RNN query on a road
network distance, it takes very long processing time
becausekNN search algorithm is invoked on every
visited node. Using SMPV in combination with
incremental Euclidean restriction (IER) framework
reduces processing time in kNN search significantly.
This paper studied for both types of RNN comparing
with the conventional method, Eager algorithm. With
extensive experiments, the proposed method
outperformed Eager algorithm in term of processing
time especially when the k value is large.

1. Introduction

An increase of mobile applications highly
depends on variety of spatial queries for location based
services (LBS). Subsequently, there has been a great
deal of researches on reverse k nearest neighbor query
algorithms.Most existing algorithm are based on
Euclidean distance, however in LBS application,
especially in mobileenvironment, road network based
queries are practically required. Query algorithm for
RkNN based on Euclidean distance has been actively
studied.

When a set of interest objects P and a query
point q is given, a query to find the nearest neighbor of

a point q (∈ P) is called a nearest neighbor (NN) query.

Reversely, when the NN of p (∈ P) is q (∈ P), p is
called a reverse nearest neighbor (RNN) of q.RNN
query is returned as a result set. Figure 1 describes the
example of NN and RNN for a game application in
which players find their NN to shoot and reverse
nearest neighbors (RNN) to avoid shoots from them. In
this figure, circles represent players, and R1NNand
R2NN of each player are listed.

Figure 1. The example of NN vs RNN

Table 1. NN vs RNN

In general, RkNN query can be definedasthe

following:
RkNN = {p ∈P|d(p,q)≤d(p,pk(p))} (1)

wherepk(p) is the kth NN of p. When a set of interest
points P and a query point q are given, an RkNN query
retrieves the points which arenearest neighbors to q.

RNN query is classified as monochromatic and
bichromatic RNN. In monochromatic (MRNN), a
given set of interest points and a query point is the
same data object.In contrast, for bichromatic (BRNN)
query, two different data sets are given for the interest
objects (P) and the query points (S) sets. Practically,
this type of query is required in manyLBS related
applications both for emergency and non-emergency
cases, for instance, taxi allocation, facility
management.Although very limited research has been
focused on RkNN query on road network distance,
existing approaches have shortcomings in processing
times especially when the interest points are sparsely
allocated on road network or when the value of k is
large.

In this paper, we propose a fast RkNN query in
road network distance using simple materialized path
view (SMPV) data [2]. Our proposed algorithm for

 1NN 2NN R1NN R2NN
p1 p2 p2,p3 φ {p2, p3}
p2 p3 p3,p1 {p3,p1,p4} {p3,p1,p4}
p3 p2 p2,p1 {p2} {p2,p1,p4}
p4 p2 p2,p3 φ φ

p1
12

p3

p
4

p2
3

2

4 8

10

30

both MRNN and BRNN is compared with the existing
approach, Eager algorithm proposed by Yiu et al. [1],
and evaluated the performance of the proposed method.
The proposed algorithm searches RkNN approximately
two orders of magnitude faster than the existing work
in terms of processing time. It especially outperforms
when interest points are sparsely distributed in the road
network and the value of k is large, and offers the
stability in processing time and independency of the
point distribution density.

The rest of the paper is organized as follows.
Related work is described in Section 2. In Section 3,
the SMPV data structure and shortest path search
algorithm are discussed. We also describe the
principles for an RkNN query on road network distance
and proposed a fast query method in Section 4.
Experimental results are presented in Section 5, and we
conclude our paper in Section 6.

2. Related Work

In earlier literature, Euclidean distance based
RkNN queries have been addressed. The concept of
RNN is formally introduced by Korn et al. [3]. In their
approach, the distance from each interest object of P to
its NN is pre-computed. Given this data, a set of points
and their distances to the NN are registered in an R-
tree, and the circle centered at a data point with a
radius equal to the distance to the NN is called its
vicinity circle. The RNN of the query object q is found
in the R-tree by searching the set of interest objects for
those whose vicinity circles overlap with q. However,
this method is not suitable for an RkNN query because
k in an RkNN query is normally set when a query is
issued. In their concept, the R-tree is constructed using
vicinity circles of predefined kth NN distances, and the
distance to the kth NN cannot be practically determined
for RkNN before invoking the query.

Stanoi et al. [4] proposed RNN algorithm in
which RNN search region is divided into six regions
centered at the query point. Then, the set of data points
P which is NNs of q are retrieved from each region.Tao
et al. [5] proposed another efficient algorithm called
TPL that recursively prunes the search space using the
bisector between a query point q and its NN.These
methods do not require any pre-computation.
Therefore, they are applicable to general RkNNqueries,
however, these efficient methods cannot be directly
applied to RkNN queries in road network distances.

Yiu et al. [1] proposed the first RkNN
algorithms applicable to road networks. The intuition
behind is that the area is gradually enlarging by

Dijkstra's to find for inclusion of RkNN in it. They
proposed two algorithms (called the Eager and Lazy
algorithms) that differ in their respective pruning
methods. In these methods, the Eager algorithm
searches RkNN significantly faster, especially when the
value of k is small and the set of points are densely
distributed. In contrast, for large k or sparsely
distributed points, it requires long processing times
because the Eager algorithm gradually enlarges the
search area, similar to Dijkstra's algorithm, and the
kNNs are searched at every visited road network node.
To cope with this performance problem, Yiu et al. also
proposed a path materialization method. For BRkNN
query, Kornet al. [3] first proposed for Euclidean
distance, and then Yiu et al. [1] researched Eager
algorithm for BRkNN in road network distance. Even
though BRkNN has been focused, respective approach
was for BR1NN, and most traditional methods for
BRkNNhas deficiency in processing time.

3. Simple Materialized Path View

3.1. Generating Distance Table

The principle behind the simple materialized
path view (SMPV) is to partition a given graph G into
several sub graphsbythe dotted lines as shown in
Figure 2, called partitioned graphs (PGi) in this section
onwards.

Figure 2.The flat graph and its partitions

The detail concept of SMPV is introduced in [2].
In this section, some modification of SMPV inwhich
appended inner-to-border-nodes distance table is
briefly presented.

Figure 2 is partitioned into four partitioned
graphs. In this figure, white circles are called border

PG1 PG2

PG3 PG4

31

nodes which belong to at least two PGs. Black circles
are called inner nodes which are other nodes except
border nodes. Two PGs are defined as adjacent PGs if
they have at least one common border node. However,
each edge belongs to only one PG exactly.

Figure 3.Extracted graph PG2

In the RkNNquery algorithm, a process to find
the road network distance between two points (start
and destination) is necessary. In this process, the pre-
computed distance tables with SMPV data, border-to-
border node Table 2(BBDT) and inner- to-border node
Table 3.

Table 2. Border-to-border node table

Table 3. Inner-to-border-node table

(IBDT) are applied.Table 2 shows the shortest

path length between every pair of border nodes of
PG2shown in Figure 3.These lengthsare calculated
by traveling inside the partitioned graph.If a path
between a pair of nodes inside the partitioned graph
is not connected, the infinity value is assigned.

 The real road network is not always
symmetrical because there might exist one-way roads
or delays affecting only one direction of a two-way
road.Thus, the transport matrix as shown in Table 3 is
also prepared to retrieve the distance from an inner
node as a starting point to a border node.

3.2. Partitioning a large graph

The real road network can be divided
intopartitioned graphs by (1) selecting source nodes on
the given road network, and (2) applying Dijkstra’s
multi-source shortest path algorithm, each road
network is checked whether it is nearest from each
source node, and then nearest nodes are grouped
intosame partitioned graph.Then, BBDT and IBDT
tables are prepared for each partitioned graph.

4. RkNNQuery

In this section, a basic method forRkNN query
in road networks by applying an improved method
based on the incremental Euclidean restriction (IER)
framework is presented.
Lemma 1 Letqbe a query point, n be a road network
node and p be a data point that satisfies

dN(q,n)>dN(p,n). For any data point p′(≠p) whose

shortest path to q passes through n,dN(q, p′)>dN(p,p′).
This means that p is not an RNN of q.
Yiu et al. [1] presented the lemma mentioned above
and it is proved where dN(a,b) denotes the road network
distance between a and b.

 Figure 4.
RNN

query on
a road

network

Figu

re 4 shows
an RNN
query on

simple
road network. In this figure, rectangles represent road
network nodes and triangles indicate data points. Data
points are assumed to be located on nodes, but this
restriction can be relaxed easily. The numbers assigned
on edges are distances. To consider RNN on this
figure, it is necessary to find nodes that are nearest

 b1 b2 b3 b4 b5

n1 21 15 21 19 23

n2 17 11 17 15 19

n3 10 4 10 8 12

n4 19 13 19 17 3

 b1 b2 b3 b4 b5

b1 0 6 20 18 22

b2 6 0 14 12 16

b3 20 14 0 2 22

b4 18 12 2 0 20

b5 22 16 22 20 0

3333 2222

5555
3333

6666 7777

5555

4444

3333

AAAA BBBB CCCC

FFFF

HHHH GGGG

DDDD EEEE

(q)(q)(q)(q)

2222

b1

b2

b3
b4 b5

n2 n1

n3 n4
6

2

4

4

9
3 8

7

32

neighbor (NN) to a query point q at point A. When we
observe D, the NN data point of D is E and the NN
data point of E is H. Therefore, A is not the NN data

point of E. If we substitute n with D, p with E, p′with H
in Lemma 1, we obtain the relations dN(A,D)>dN(E,D)
and dN(A,H)>dN(E,H). Therefore, even if we continue
searching beyondD, we cannot find the RNN of q.

Figure 5.The example of BRNN query

Alternatively, Figure 5 shows the idea of BRNN
query in Euclidean distance. When a set of query
objects S and a set of data objects P and a query point q

(∈ S) are given, BRNN query retrieves all data points

in p(∈ P) that are nearest to q than any other points in
S. In this figure, p1 is BRNN of s1, p4 is BRNN of s2
and p2 and p3 is BRNN of s3.

Hereafter, how MRNN query works with Eager
algorithm, proposed by Yiu et al. [1] which is followed
the lemma 1, is described by Figure 4. Road network
nodes are visited from qto surrounding nodes in a
method similar to that of Dijkstra’s algorithm.When
the query qis on A in this figure, node B is visited
first.Next, at most k NNs of B is searched for within

the distance Dst=dN(B,A). This function is called

rangeNN(n,q,Dst). In the above example, n is B and q

is A. For simplicity, we only consider for one k. In the
previous query, C is found as B’s NN. Then, we check
whether C is included as an RNN of A. This check can
be done to investigate whether A is the NN of C.

This function is called verify(p,k,q) and returns

true when q is the NN of p, otherwise, it returns false.
In this example, the result of verify(C,1,q) is true;
therefore, C is determined as an RNN of q. The next
visited node is D; thus, rangeNN(D,q,5) is called and E
is obtained as the NN of D. To check whether E is a

RNN of q, verify(E,1,q) is called; however, false is

obtained in this case. Hence, edges beyond D are safely
pruned. At this time, there is no search path left,
therefore, the search process is terminated.

In Yiu’s Eager algorithm, two methods, named
as verify(p,k,q) and rangeNN(n,q,Dst) are used. For

simplicity, these functions are here after denoted as
verifyRNN and rangeNN.

The disadvantages intheEager algorithm are
summarized as two: (1)a large search area for the
verifyRNNandrangeNN functions, (2)a drastic increase
in processing time caused by performing rangeNN on
every visited node on the road network distance.

To cope with these problems, we propose a
method to adapt an IER framework for the verifyRNN
and rangeNN methods. Furthermore, we present an
efficient method of RkNN search to perform
MRkNNand BRkNN queries on the SMPV: (1) to
adapt an IER framework for both rangeNN and
verifyRNNand (2) to use the Eager algorithm only on
the border nodes in the SMPV.

4.1. RkNN on SMPV structure

The reason of poor performance in the Eager
algorithm is invoking rangeNNat every visited node,
and it takes long processing times.In Algorithm 1 and 2
in the proposed method, rangeNN is invoked only on
the border nodes of the partitioned graphs to overcome
the deficiency in the Eager algorithm.

Algorithm 1, the procedure StartPG is invoked
to determine the partitioned graph to which a given
query point q belongs as expressed in line 2 of
Algorithm 1. Let the data point set be P. Then in line 4,
each element in P is checked to determine whether q is
an RkNN of q or not. This procedure is the same as in
verify(p,k,q) in the Eager algorithm. The verifyRNN

searches for the kNNs of each p∈P, and then if q is
included in the kNN set, p is determined to be an
RkNN of q and added to the result setin line 5.

Algorithm 1 StartPG
1: procedure StartPG(q,PQ,R)
2: pg←determinePG(q)

3: P←f indPOIinPG(q)

4:for all p ∈Pdo
5: if verifyRNN(p,k,q) then R p
�add ptoto result set 6: end if
7: end for

8: for all b∈BN do
9: PQ.enQueue(<dN(q,b),b,q,pg>)
10:end for
11: end procedure

This check needs a wide range search and is not
exclusive to only a partitioned graph, hence, IER [5]
can be efficiently perform it using SMPV.

s1
p1

s2

s3 p3

p2

p4

33

Figure 6.Processing of a cell where q exists

Figure 6 shows the PG1 as in Figure 2. In this
example, a query point q is on node n8. A square
overlapped on node n7indicates a data point. For
simplicity, the following explanation considers the case
for which k is one. By searching for the NN of n7, q is
obtained as the result. Therefore, n7is an RNN of q.
Consequently, n7is added to the result set. Next, the
search area is enlarged to include the neighboring
partitioned graph. For each border node bi of this
partitioned graph, the distance from q to biis obtained
by referring to the IBDT of the related partitioned
graph. Thereafter, a record is composed and inserted
into priority queue PQ. The record is composed as

<d,n,p,cid>

whered is the road network distance between q and the
border node concerned (n), p is the previous node on
the shortest path from q to n, and ciddenotes the
partitioned graph ID to which n belongs. The first
record inserted into PQ is as follows.

<dN(q,bi),bi,q, PG1>

Here, PG1denotes the partitioned graph in which q is
included. Line 8 to 10 indicates insertion process into
PQ.

Next, the RkNN search starts. When a record is
dequeued from PQ, the search propagates to the
neighboring partitioned graphs. Figure 7 illustrates a
partitioned graph PG1 in which query point q is
included and PG2 as its neighboring partitioned graph.

Figure 7.Border node expansion

When a record r is dequeued from PQ and r.nis

the border node b2, data points in PG2 are searched. In

this partitioned graph, a node n3is included. The kNNs
of n3are searched, and if q is included in the kNN set,
n3is added to the result set. Otherwise, n3is ignored.
This partitioned graph can be visited several times
from different border nodes. Therefore, PG2 is marked
as visited to avoid duplicate searches. In the next step,
rangeNN is invoked from the border node bi to find
candidate data points. If the result set is not empty,
verifyRNN is invoked to check whether each found
data point is truly an RkNN of q. If the result of
verifyRNNis true, the data point is added to the result
set. If the size of the result set returned from rangeNN
is smaller than k, there can exist other RkNNs on the
path through this node v.n, and still cannot prune the
search. Therefore, new records from bi to the other
border nodes in the partitioned graph are created and
inserted into PQ.

Algorithm 2 shows the pseudo-code of the
proposed method described above. Lines 3 to 12 are
similar to the process described by the Eager algorithm.
When the record v is obtained from PQ, at most
number of k NNs of the road network node v.nare
searched and put into KNN. For each element p of
KNN, p is checked whether q is included in its kNN. If
it is included,pis added into the result set R.

Line 13 of Algorithm 2 checks whether
thenumber of elements in KNN is less than k; i.e., the
numberofrangeNN resulted data points that are existing
in the area centered at v.n, and having smaller distance
than dN(v.n, q) is less than k. If so, node v.nis expanded
and the search is continued. Otherwise, no more
RkNNs exists on the path through v.n; therefore, node
expansion at v.nis not executed.

Algorithm 2 RkNN
1: functionRkNN(q)
2: PQ ←∅, R←∅
3: StartPG(q; PQ,R)
4: while PQ not empty do
5:v ←PQ.deQueue()
6: CS.add(v)
7: KNN ←rangeNN(v.n,k,dN(v.n,q),PQ)
8: for all p in KNN do
9: if verifyRNN(p,k,q) then
10: R←R∪p
11:end if
12: end for
13: if |KNN|<k then
14: for all b ∈BN do
15:if v.cid is visited first time then
16: CP←f indPOIinSG(v.cid)
17: for all p ∈CP do
18:if verifyRNN(p,k,q) then
19: R←R∪p
20: end if
21: end for

n7

n5

b7

6

4

2

2

3

n8(q)

n6

b6

b1

b2

b3

4

5
3

n7

n5

b7

6

4

2

2

3
n8(q)

n6

b6

b1

b2

b3

4

5
3

4
n3

n2

b4

n1

n4

b5

4

3 8
9

6 7

8

2

34

22:end if
23: PQ.enQueue(<dN(q,b),b,p,v.cid>)
24: end for
25: end if
26: end while
27: return R �RkNN of q
28: end function

5. Experimental Evaluations

To evaluate our proposed method for RkNN
comparing to the existing Eager algorithm, several
experiments have been done by using the real road
network data of Saitama city map whose nodes are
16,284 and links are 24,914. We generated variety
ofdensity(D) of data point sets on the road network
links by pseudorandom sequences. For instance, D =
0.01 means that a data point exists once every 100
links. Both algorithms were implemented in Java and
evaluated on a PC with Intel Corei7-4770 CPU
(3.4GHz) and 32GB of memory.

Figure 8 and 9 show the processing times of
MRkNN queries. In the figure 8, the densityof data
points isset to 0.01. In this figure, the horizontal axis
shows kvalue for MRkNNand the vertical axis shows
the processing times in seconds to search kNNs. As
shown in the figure, the processing time of the Eager
algorithm sharply increases with k because the search
area also expands. In contrast, the proposed algorithm
linearly increases with k.

Figure 8.Processing time when D is 0.01

Figure 9. Processing time when Dvaries

Figure 9 shows the processing time on varying
the density of data points. In the figure, the horizontal
axis shows the density and the vertical axis shows the

processing time in secondswhenkis 5. The processing
time of the Eager algorithm increases sharply when the
density is low. On the other hand, the proposed
algorithm remains fast even in that case. When the
density of data points is high, the Eager algorithm
performed well because the size of the search area
decreases with the increase in the density. The
proposed algorithm shows stable characteristics and
independent of the probability.

Figure 10 shows the processing time
forBRkNNquery.This figure measures the processing
time for BR1NN by varyingtheD for S(query points)
set when D of P(interest points) set is 0.002.In this
result, the horizontal axis shows the varied D of S set
and the vertical axis is the processing time.
WhenDofSsetis low, searching in wide range is
necessary, and in such case, the Eager algorithm takes
long processing time. Conversely, when D value
increases, the searching area becomes narrow and
processing time is faster in Eager algorithm. However,
our proposed method showed the stable characteristic
and independent of the D for S set.

Figure 10. Processing time varying D for S

6. Conclusion

In this paper, we proposed a fast RkNN query in
road network distance by using the simple materialized
path view (SMPV) data. We presented two types of
RkNNquery,MRkNN and BRkNN query. With
extensive experiments, we showed that the
performance of the proposed method comparing with
the existing method, Eager algorithm. Especially, the
proposed method is 10 to 100 times faster in processing
time for both types of RkNN query when the number of
k is large and when the density distribution of points is
sparse on a road network. On the other hand, the Eager
algorithm has a merit for the very dense distribution of
points on road network. Hence, it is considered to
refine a new approach by the combination of the
strength of our proposed method and the Eager
algorithm in order to obtain a more efficient and
adaptive query which is not depending on the density

35

distribution of data points on a road network. To
advance this concept is for our future work.

Acknowledgments

This study was partially supported by the
Japanese Ministry of Education, Science, Sports and
Culture (Grant-in-Aid Science Research (C)
24500107).

References

[1] Yiu, M. L., Papadias, D., Mamoulis, N. and Tao, Y.:
Reverse Nearest Neighbor in Large Graphs,
IEEETransaction on Knowledge and Data Engineering,
Vol. 18, No. 4, 2006, pp.1-14.

[2] Hlaing, A. T., Htoo, H., Ohsawa, Y., Sonehara, N. and
Sakauchi, M.: Shortest Path Finder with Light
Materialized Path View for Location Based Services,
Proc. WAIM2013, Vol. LNCS7923, China, 2013, pp.
229-234.

[3] F. Korn and S. Muthukrishnan: “Influence sets based
onreverse nearest neighbor queries”, ACM SIGMOD
Record, Vol. 29, 2000, pp. 201-212.

[4] I. Stanoi, D. Agawal and A. E. Abbadi: “Reverse nearest
neighbor queries for dynamic databases”, Proc. of 2000
ACM SIGMODWorkshop on Research Issues in Data
Mining and Knowledge Discovery, 2000, pp. 44-53.

[5] Y. Tao, D. Papadias and X. Lian: “Reverse knn search in
arbitrary dimensionality”, Proceedings of the 30th
VLDB, Conference, 2004, pp. 744-755.

